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Abstract. Class activation maps (CAMs) are commonly employed in
weakly supervised semantic segmentation (WSSS) to produce pseudo-
labels. Due to incomplete or excessive class activation, existing studies
often resort to offline CAM refinement, introducing additional stages or
proposing offline modules. This can cause optimization difficulties for
single-stage methods and limit generalizability. In this study, we aim to
reduce the observed CAM inconsistency and error to mitigate reliance on
refinement processes. We propose an end-to-end WSSS model incorporat-
ing guided CAMs, wherein our segmentation model is trained while con-
currently optimizing CAMs online. Our method, Co-training with Swap-
ping Assignments (CoSA), leverages a dual-stream framework, where
one sub-network learns from the swapped assignments generated by the
other. We introduce three techniques in this framework: i) soft perplexity-
based regularization to penalize uncertain regions; ii) a threshold-searching
approach to dynamically revise the confidence threshold; and iii) con-
trastive separation to address the coexistence problem. CoSA demon-
strates exceptional performance, achieving mIoU of 76.2% and 51.0% on
VOC and COCO validation datasets, respectively, surpassing existing
baselines by a substantial margin. Notably, CoSA is the first single-stage
approach to outperform all existing multi-stage methods including those
with additional supervision. Source code is publicly available at here.
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1 Introduction

The objective of weakly supervised semantic segmentation (WSSS) is to train a
segmentation model without relying on pixel-level labels but on weak and cost-
effective annotations, such as image-level classification labels [3, 26, 48], object
points [4,43], and bounding boxes [16,28,34,55]. In particular, image-level classi-
fication labels have commonly been employed as weak labels due to the minimal
or negligible annotation effort required [2,58]. With the absence of precise local-
ization information, image-level WSSS often makes use of the coarse localization
offered by class activation maps (CAMs) [72]. CAMs pertain to the intermediate
outputs derived from a classification network. They visually illustrate the activa-
tion regions corresponding to each individual class. Thus, they are often used to
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generate pseudo masks for training. However, CAMs suffer from i) Inconsistent
Activation: CAMs demonstrate variability and lack robustness in accommodat-
ing geometric transformations of input images [58], resulting in inconsistent ac-
tivation regions for the same input. ii) Inaccurate Activation: activation region
accuracy is often compromised, resulting in incomplete or excessive class activa-
tion, only covering discriminative object regions [1]. Despite enhanced localiza-
tion mechanisms in the variants GradCAM [53] and GradCAM++ [7], they still
struggle to generate satisfactory pseudo-labels for WSSS [58]. Thus, many WSSS
works are dedicated to studying CAM refinement or post-processing [1, 15,31].

In general, they [2,18,48,62] comprise three stages: CAM generation, refine-
ment, and segmentation training with pseudo-labels. Multi-stage frameworks are
known to be time-consuming and complex as several models must be trained at
different stages. In contrast, single-stage models [3, 50, 70], which include a uni-
fied network of all stages, are more efficient. They are trained to co-optimize the
segmentation and classification tasks, but the generated CAMs are not explicitly
trained. As a result, they need refinement to produce high-quality pseudo-labels,
often leveraging hand-crafted modules, such as CRF in [70], PAMR in [3], PAR
in [50, 51]. As the refinement modules are predefined and offline, they decouple
the CAMs from the primary optimization. When the refined CAMs are employed
as segmentation learning objectives, the optimization of the segmentation branch
may deviate from that of the classification branch. Hence, it is difficult for single-
stage models to optimize the segmentation task while yielding satisfactory CAM
pseudo-labels. This optimization difficulty underlies the inferior performance in
single-stage approaches compared to multi-stage [48, 62]. Further, hand-crafted
refinement modules require heuristic tuning and empirical changes, thereby lim-
iting their adaptability to novel datasets [3,50]. Despite the potential benefits of
post-refinement in addressing the aforementioned issues associated with CAMs,
which have been extensively discussed in WSSS studies, there has been limited
exploration of explicit online optimization for CAMs.

The absence of fully optimized CAMs is an important factor in the indis-
pensability of this refinement. In this paper, we take a different approach by
optimizing CAMs in an end-to-end fashion. We ask a core question: Can we
train a model that delivers reliable, consistent and accurate CAMs, which can
be applied directly for WSSS without the necessity for subsequent refinements?
We show that the answer is yes, in two respects: 1) we note that even though
CAM is differentiable, it is not robust to variation. As the intermediate output
of classification, CAMs are not fully optimized for segmentation purposes since
the primary objective is to minimize classification error. This implies that within
an optimized network, numerous weight combinations exist that can yield ac-
curate classification outcomes, while generating CAMs of varying qualities. To
investigate this, we conduct oracle experiments, training a classification model
while simultaneously guiding the CAMs with the segmentation ground truth.
A noticeable enhancement in quality is observed in guided compared to vanilla
CAMs, without compromising classification accuracy. 2) we demonstrate the fea-
sibility of substituting the oracle with segmentation pseudo-labels (SPL) in the
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context of weak supervision. Consequently, we harness the potential of SPL for
WSSS by co-training both CAMs and segmentation through mutual learning.

We explore an effective way to substitute the CAM refinement process, i.e.
guiding CAMs in an end-to-end fashion. Our method optimizes the CAMs and
segmentation prediction simultaneously thanks to the differentiability of CAMs.
To achieve this, we adopt a dual-stream framework that includes an online net-
work (ON) and an assignment network (AN), inspired by self-training frame-
works [5,22,65]. The AN is responsible for producing CAM pseudo-labels (CPL)
and segmentation pseudo-labels (SPL) to train the ON. Since CPL and SPL are
swapped for supervising segmentation and CAMs, respectively, our method is
named Co-training with Swapping Assignments (CoSA).

The benefit of this end-to-end framework is that it enables us to quantify
pseudo-label reliability online, as opposed to the offline hard pseudo-labels used
in existing methodologies [2, 15, 48, 62]. We can then incorporate soft regular-
ization to compensate for CPL uncertainty, where the segmentation loss for
different regions is adaptively weighted according to our estimated perplexity
map. In comparison to existing literature, this dynamic learning scheme can ex-
ploit the potential of CPL and enhance the final performance, as opposed to
performance being constrained by predetermined CPL. The threshold is a key
hyper-parameter for generating the CPL [48,51,58]. It not only requires tuning
but necessitates dynamic adjustment to align with the model’s learning state at
various time-steps. CoSA integrates threshold searching to dynamically adapt
its learning state, as opposed to the fixed thresholding [12, 18, 50]. This can en-
hance performance and help to eliminate the laborious manual parameter-tuning
task. We further address a common issue with CAMs, known as the coexistence
problem, whereby certain class activations display extensive false positive re-
gions that inaccurately merge the objects with their surroundings (Fig. 4). In
response, we introduce a technique to leverage low-level CAMs enriched with
object-specific details to contrastively separate those coexistent classes.

The proposed CoSA greatly surpasses existing WSSS methods. Our approach
achieves the leading results on VOC and COCO benchmarks, highlighting the
contribution of this work: i) We are the first to propose SPL as a substitute
for guiding CAMs. We present compelling evidence of its potential to produce
more reliable, consistent and accurate CAMs. ii) We introduce a dual-stream
framework with swapped assignments, which co-optimizes the CAMs and seg-
mentation predictions in an end-to-end fashion. iii) We address the learning
dynamics, proposing two components within our framework: reliability-based
adaptive weighting and dynamic thresholding. iv) We address the CAM coex-
istence issue, proposing a contrastive separation approach to regularize CAMs,
significantly enhancing the results of affected classes.

2 Related Work

Multi-Stage WSSS.Most image-level WSSS work is multi-stage, typically com-
prising three stages: CAM generation, CAM refinement, and segmentation train-
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ing. Some approaches employ heuristic strategies to address incomplete acti-
vation regions, such as adversarial erasing [30, 56, 67, 71], feature map opti-
mization [12–14, 32], self-supervised learning [11, 54, 58], and contrastive learn-
ing [15,27,61,73]. Some methods focus on post-refining the CAMs by propagating
object regions from the seeds to their semantically similar pixels. AffinityNet [2],
for instance, learns pixel-level affinity to enhance CPL. This has motivated other
work [1, 10, 20, 36] that utilize additional networks to generate more accurate
CPL. Other work studies optimization given coarse pseudo-labels: [38] explores
uncertainty of noisy labels, [41] adaptively corrects CPL during early learning,
and [48] enhances boundary prediction through co-training. Since image-level
labels alone do not yield satisfactory results, several methods incorporate addi-
tional modalities, such as saliency maps [18,35,36,73] or CLIP models [40,60,64].
Recently, vision transformers [17] have emerged as prominent models for vari-
ous vision tasks. Several WSSS studies benefit from vision transformers: [21]
enhances CAMs by incorporating the attention map from ViT; [62] introduces
class-specific attention for discriminative object localization; [40] and [64] lever-
age multi-modal transformers to enhance performance.
Single-Stage WSSS. In contrast, single-stage methods are much more effi-
cient. They contain a shared backbone with heads for classification and segmen-
tation [3, 50, 51, 70]. The pipeline involves generating and refining the CAMs,
leveraging an offline module, such as PAMR [3], PAR [50], or CRF [70]. Subse-
quently, the refined CPL are used for segmentation. Single-stage methods exhibit
faster speed and a lower memory footprint but are challenging to optimize due
to the obfuscation in offline refinement. As a result, they often yield inferior per-
formance compared to multi-stage methods. More recently, with the success of
ViT, single-stage WSSS has been greatly advanced. AFA [50] proposes learning
reliable affinity from attention to refine the CAMs. Similarly, ToCo [51] mitigates
the problem of over-smoothing in vision transformers by contrastively learning
from patch tokens and class tokens. The existing works depend heavily on offline
refinement of CAMs. In this study, we further explore the potential of single-
stage approaches and showcase the redundancy of offline refinement. We propose
an effective alternative for generating consistent, and accurate CAMs in WSSS.

3 Method

3.1 Guiding Class Activation Maps

Class activation maps are determined by the feature map F and the weights Wfc
for the last FC layer [72]. Let us consider a C classes classification problem:

Lcls(Z, Y )=
−1

C

C∑
c=1

[
Y c log σc

Z + (1− Y c) log (1− σc
Z)
]
, (1)

where σc
Z ≜ σ(Zc) represents Sigmoid activation, Y ≜ Ygt denotes the one-hot

multi-class label, and Z ≜ GW⊤
fc ∈RC represents the prediction logits, derived
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Fig. 1: Oracle Experiments on VOC. CAMs are guided by the ground truth (GT), pro-
posed segmentation pseudo-labels (SPL), no guidance (NO) and random noise (NS). (a):
classification performance; (b): CAM quality; (c) CAM visualization. All experiments employ
2k-iters warm-up before guidance is introduced.

from the final FC layer, where G=Pooling(F )∈RD is a spatial pooled feature
from F ∈ RHW×D. During training, Eq. (1) is optimized with respect to the
learnable parameters θ in the backbone. When gradients flow backwards from G
to F , only a fraction of elements in F get optimized, implying that a perturbation
in F does not guarantee corresponding response in G due to the spatial pooling,
resulting in non-determinism in the feature map F . This indeterminate nature
can lead to stochasticity of the generated CAMs.

To demonstrate, we conduct oracle experiments wherein we supervise the out-
put CAMs from a classifier with the ground truth segmentation (GT), enabling
optimization of all elements in F . For comparison, we conduct experiments where
the CAMs are not guided (NO), and guided with random noise masks (NS). Re-
sults, shown in Fig. 1, demonstrate that different guidance for M does not affect
classification even for the NS group, as all experiment groups achieved over 97%
classification precision. However, drastic differences can be observed w.r.t. the
quality of the CAMs. The GT group results in a notable quality improvement
over the NO group, as shown in Fig. 1(b)(c). In contrast, the NS group sab-
otages the CAMs. This suggests the stochasticity of CAMs and explains their
variability and lack robustness, something also observed in [2, 12,58].

Since relying on GT segmentation is not feasible in WSSS, we propose an al-
ternative for guiding CAMs, employing predicted masks as segmentation pseudo-
labels (SPL). As shown in Fig. 1, a SPL-guided classifier yields CAMs that sig-
nificantly outperform vanilla CAMs (NO), performing close to the oracle (GT).
Motivated by this, we introduce a co-training mechanism in which CAMs and
predicted masks are optimized mutually without additional CAM refinement.

3.2 Co-training with Swapping Assignments

Overall Framework. As shown in Fig. 2, CoSA contains two networks: an
online network (ON) and an assignment network (AN). ON, parameterized by
Θ, comprises three parts: a backbone encoder, FC layers, and a segmentation
head. AN has the same architecture as ON but uses different weights, denoted
Θ′. ON is trained with the pseudo assignments generated by AN, while AN is
updated by the exponential moving average of ON: Θ′ ← mΘ′ + (1 − m)Θ,
where m ∈ [0, 1] denotes a momentum coefficient. Consequently, the weights of



6 Xinyu et al.

Assignment
Network

CAMs

Seg.
Pred.SPL

RAW

CPL

Contrastive Sep.

Swapping Assignments 

Seg.
Pred.

CAMs

Perplexity Est.Dynamic Thre.

Online
Network

EMA update

CLS Classfication 

Aug. Aug.

N
et
w
or
k

Feat. Map

Encoder

CLS Seg.
Pred.

CAMs

Dilated
Conv
x3Pooling

FC
Layer

Input

Fig. 2: Co-training with Swapping Assignments (CoSA). We propose an end-to-end
dual-stream weakly-supervised segmentation framework, capable of co-optimizing the segmen-
tation prediction and CAMs by leveraging the swapped assignments, namely CAM pseudo-
labels (CPL) and segmentation pseudo-labels (SPL). Our framework comprises two networks:
an assignment network (AN) and an online network (ON), where the AN is responsible for
generating pseudo-labels for training the ON. While the AN has identical architecture to the
ON, it is updated through exponential moving average (EMA) of the ON. The diagram on the
right provides an illustration of the architecture. Given weak-augmented images as input, the
AN produces CPL to supervise segmentation in the ON (Lc2s). During training, the CPL is
softened by reliability-based adaptive weighting (RAW), formed based on CAM perplexity es-
timation and dynamic thresholding. The AN also generates SPL which is utilized to supervise
the CAMs (Ls2c). Further, the CAMs are regularized to contrastively separate the foreground
from the background regions (Lcsc). Note that the ON is also trained for classification using
the image-level class labels (Lcls).

AN represent a delayed and more stable version of the weights of ON, which
helps to yield a consistent and stabilized learning target [22].

An image and class label pair (x, Ygt) is randomly sampled from a WSSS
dataset D. CoSA utilizes two augmented views Ts(x) and Tw(x) as input for ON
and AN, respectively, representing strong and weak image transformations. Dur-
ing training, AN produces CAMsM′ and segmentation predictions S ′. The CAM
pseudo-labels (CPL) and segmentation pseudo-labels (SPL) are generated byM′

and S ′ after filtering with respect to Ygt. CPL and SPL are subsequently used as
learning targets for supervising the segmentation predictions S and CAMs M
from ON, respectively.

Swapping Assignments. Our objective is to co-optimize S and M. A naive
approach could enforce the learning objectives S ≜ S ′ andM ≜M′ as a knowl-
edge distillation process [25], where AN and ON play the roles of teacher and
student. However, this assumes availability of a pretrained teacher which is not
possible in WSSS settings. Instead, we setup a swapped self-distillation objective:

Lswap = Lc2s(S,M′) + Ls2c(M,S ′) , (2)

where Lc2s optimizes the segmentation performance given the CPL, and Ls2c
assesses the CAM quality with respect to SPL. Building on self-distillation [6,
46], we present this swapped self-distillation framework tailored specifically to
facilitate information exchange between the CAMs and segmentation.
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Fig. 3: CPL Analysis (a): heatmap of CPL accuracy vs. confident ranges (x-axis) for
different time-steps (y-axis) for VOC and COCO. (b): correlation between perplexity and
accuracy of CPL for different time-steps. (c): distribution of CAMs’ confidence categorized by
the proposed dynamic threshold on VOC. See Supp. for COCO analysis.

3.3 Segmentation Optimization

CAM2Seg Learning. Previous studies [2, 3, 29, 50] refine the CAMs to obtain
pseudo-label, then perform pseudo-label to segmentation learning (PL2Seg). As
our guided-CAMs do not require extra refinement process, they can be directly
employed as learning targets (CAM2Seg). Nonetheless, CAMs primarily concen-
trate on the activated regions of the foreground while disregarding the back-
ground. As per the established convention [15, 51, 58], a threshold value ξ is
employed for splitting the foreground and the background. Formally, our CAM
pseudo-label (CPL) is given by:

ŶCPL
x,y =

{
argmax(M′

x,y) + 1, if ν ≥ ξ,
0, if ν < ξ,

, (3)

where ν ≜ max(M′
x,y) denotes the the maximum activation, 0 denotes the back-

ground index. Then, the CAM2seg learning objective Lc2s is cross entropy be-
tween YCPL and S, as with the general supervised segmentation loss [8].
Reliability based Adaptive Weighting (RAW). Segmentation performance
depends heavily on the reliability of the pseudo-labels. Thus, it is important to
assess their reliability. Existing methods use post-refinement to enhance pseudo-
label credibility [3,70]. As CoSA can generate online CPL, we propose to lever-
age confidence information to compensate the CAM2Seg loss during training.
Specifically, we propose to assess the perplexity scores for each pixel in ŶCPL and
leverage these scores to re-weight Lc2s for penalizing unreliable regions. However,
estimating per-pixel perplexity is non-trivial. Through empirical analysis, we ob-
serve a noteworthy association between the confidence values of CAMs and their
accuracy at each time-step. This correlation suggests that regions with extremely
low or high confidence exhibit higher accuracy throughout training, as shown in
Fig. 3(a). To quantitatively model perplexity, we make two assumptions: i) the
reliability of pseudo-labels is positively correlated with their accuracy, and ii)
the perplexity score is negatively correlated with the reliability. Then, per-pixel
perplexity of ŶCPL

x,y is defined as:

Px,y =

{
[− log (λα(ν − ξ)/(1− ξ))]λβ if ν ≥ ξ,

[− log (λα(ξ − ν)/ξ)]λβ if ν < ξ,
(4)
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where the term within the logarithm denotes the normalized distance to ξ in
[0, 1]. The logarithm ensures Px,y→+∞ as distance→ 0, and Px,y→ 0 as dis-
tance→1. λα ∈ R+ controls the perplexity score’s minimum value and λβ ∈ R+

determines the sharpness or smoothness of the distribution. Higher Px,y indi-
cates confidence of ŶCPL

x,y closer to threshold ξ. This observation is substantiated
by Fig. 3(a), where confidence values near ξ=0.5 exhibit lower reliability. Fur-
thermore, the correlation between perplexity and accuracy remains significant
across various training time-steps and datasets, as depicted in Fig. 3(b).

Since we hypothesize negative reliability-perplexity correlation, the reliability
score can be defined as the reciprocal of perplexity. To accommodate reliability
variation for different input, we use the normalized reliability as the per-pixel
weights for Lc2s. This arrives our RAW-based CAM2Seg objective:

Lc2s(x, y)=−
|R|∑

i,j∈R (Pi,jPx,y)
−1

C∑
c=0

[
1
[
ŶCPL

x,y =c
]
log

(
expSc

x,y∑C
k=0 expSk

x,y

)]
, (5)

where |R| represents total number of pixels in a batch.
Dynamic Threshold. Existing WSSS work [50,51] prescribes a fixed threshold
to separate foreground and background, which neglects inherent variability due
to prediction confidence fluctuation during training. Obviously, applying a fixed
threshold in Fig. 3(a) is sub-optimal.

To alleviate this, we introduce dynamic thresholding. As shown in Fig. 3(c),
the confidence distribution reveals discernible clusters. We assume the fore-
ground and background pixels satisfy a bimodal Gaussian Mixture distribution.
Then, the optimal dynamic threshold ξ⋆ is determined by maximizing the Gaus-
sian Mixture likelihood:

ξ⋆ = argmax
ξ

∏
x∈{M′≥ξ}

π̃fgN
(
x|µ̃fg, Σ̃fg

)
+

∏
x∈{M′<ξ}

π̃bgN
(
x|µ̃bg, Σ̃bg

)
, (6)

whereN (x|µ,Σ) denotes the Gaussian function and π, µ, Σ are the weight, mean
and covariance. To avoid mini-batch bias, we maintain a queue to fit GMM, with
the currentM′ batch enqueued and the oldest dequeued. This facilitates estab-
lishment of a gradually evolving threshold, contributing to learning stabilization.

3.4 CAM Optimization

Seg2CAM Learning. To generate SPL, segmentation predictions S ′ are fil-
tered by the weak labels Ygt and transformed into probabilities:

S ′ c
x,y =

{
−∞, if Y c

gt = 0,
S ′ c
x,y, if Y c

gt ̸= 0,
ŶSPL

x,y = Softmax(
S ′
x,y

τ
) , (7)

where τ denotes the temperature to sharpen ŶSPL
x,y . Let R be all the positions in

SPL, then the Seg2CAM learning objective is defined as:

Ls2c = − 1

C|R|

C∑
c=1

∑
x,y∈R

[
ŶSPL

x,y [c] log(σ(Mc
x,y))+(1−ŶSPL

x,y [c]) log(1−σ(Mc
x,y))

]
. (8)
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Fig. 4: Illustration of Coexistence Problem in CAMs. The first row shows the input
images. The second row shows the coexistence problem e.g. ’bird’ with ’branches’, ’train’ with
’railways’ and ’boat’ with ’the sea’.

Coexistence Problem in CAMs. Certain class activations often exhibit large
false positive regions, where objects are incorrectly merged with surroundings,
as shown in Fig. 4. For instance, the classes ‘bird’ and ‘tree branches’, ‘train’
and ‘railways’, etc. frequently appear together in VOC dataset. We refer to this
issue as the coexistence problem. We hypothesize that the coexistence problem
is attributed to three factors: i) Objects that coexist in images, such as ‘tree
branches’, are not annotated w.r.t. weak labels, which makes it challenging for a
model to semantically distinguish coexistence. ii) Training datasets lack sufficient
samples for such classes. iii) High-level feature maps, though rich in abstract
representations and semantic information, lack essential low-level features such
as edges, textures, and colors [24]. Thus, CAMs generated from the last layer
are poor in low-level information for segmenting objects. Conversely, segmenting
objects with high-level semantics is hindered due to factors i) and ii).
Contrastive Separation in CAMs. We posit that the effective usage of low-
level information can alleviate the coexistence problem. Since shallower-layer
feature is rich in low-level info [69], we propose to extract CAMs M† from an
earlier layer, and present its comparison withM in Fig. 5, showing that directly
substituting M with M† is not feasible due to the lower mIoU upperbound
of M†. However, if we consider the confident regions in M and M†, i.e. filter
by a low-pass perplexity, then {M†

x,y | Px,y ≤ ϵ} result in higher mIoU than
{Mx,y |Px,y≤ ϵ}, as shown in Fig. 5(b), where ϵ denotes a low-pass coefficient.
Further, we observe in some examples the presence of coexistence issues in M
but absence inM† as shown in Fig. 5(c). This suggests thatM† performs worse
than M in general, but better for those regions with low perplexity. Driven by
these findings, we propose to regularizeM byM†′ (from AN). Specifically,M†′

after a low-pass filter are used to determine the positive R+
i,j and negative R−

i,j

regions:
R+

i,j =
{
(x, y) | Px,y ≤ ϵ, ŷCPL

x,y = ŷCPL
i,j , (x, y) ̸= (i, j)

}
R−

i,j =
{
(x, y) | Px,y ≤ ϵ, ŷCPL

x,y ̸= ŷCPL
i,j

}
,

(9)

where (i, j)∈Ω, Ω={(x, y) |Px,y≤ϵ} is low-perplexity region inM†′, and ŷCPL

represents the CPL of M†′. Then, we have contrastive separation loss for M:

Lcsc = − 1

|Ω|
∑
i,j∈Ω

1

|R+
i,j |

∑
x,y∈R+

i,j

log
Li,j

x,y

Li,j
x,y +Ki,j

n,m

, (10)
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(b): same as (a) but filtered by perplexity. (c): cases of coexistence in M but not in M†.

where Li,j
x,y = exp(ld(Mi,j ,Mx,y)/τ), ld(a, b) measures the similarity between

(a,b), τ denotes the InfoNCE loss [45] temperature, and Ki,j
n,m=

∑
n,m∈R−

i,j
Li,j
n,m.

Overall Objectives. The objectives encompass the aforementioned losses and
a further LM†

c2s to stabilize training and accelerate convergence, resulting in the
CoSA objective:

LCoSA=Lcls+ LM†

cls +λc2s
(
Lc2s+LM†

c2s
)
+λs2cLs2c +λcscLcsc. (11)

4 Experiments

4.1 Experiment Details and Results

Datasets. We evaluate on two benchmarks: VOC [19] and COCO [39]. VOC
encompasses 20 categories with train, val, and test splits of 1464, 1449, and
1456 images. Following WSSS practice [2,3,62], SBD [23] is used to augment the
train split to 10,582. COCO contains 80 categories with train and val splits
of approx. 82K and 40K images. Our model is trained and evaluated using only
the image-level classification labels3, and employing mIoU as evaluation metrics.
Implementation Details. Following [51], we use ImageNet pretrained ViT-
base (ViT-B) [17] as the encoder. For classification, we use global max pooling
(GMP) [49] and the CAM approach [72]. For the segmentation decoder, we use
LargeFOV [8], as with [51]. ON is trained with AdamW [44]. The learning rate is
set to 6E-5 in tandem with polynomial decay. AN is updated with a momentum
of 0.9994. For preprocessing, the images are cropped to 4482, then weak/strong
augmentations are applied (see Supp.). The perplexity constants (λα, λβ) are
set to (0.8, 1), GMM-fitting queue length is 100, and softmax temperature τ
is 0.01. The low perplexity threshold ϵ is set to 1 and the loss weight factors
(λc2s, λs2c, λcsc) to (0.1, 0.05, 0.1).
Semantic Segmentation Comparison. We compare our method with ex-
isting SOTA WSSS methods on VOC and COCO for semantic segmentation
in Tab. 1. CoSA achieves 76.2% and 75.1% on VOC12 val and test, respec-
tively, surpassing the highest-performing single-stage model (ToCo) by 5.1% and
2.9%, as well as all multi-stage methods, including those with additional supervi-
sion. In the COCO evaluation, CoSA consistently outperforms other approaches,
3 Not available for VOC test split and so not used in evaluation.
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demonstrating a significant increase of 8.7% over the top-performing single-stage
methods. Further, there is a also 2.7% improvement over the leading multi-stage
method [13]. While our primary goal is to provide an end-to-end WSSS solution,
we also offer a multi-stage version of CoSA, denoted as CoSA-MS in Tab. 1,
where various standalone segmentation networks are trained using our CPL. Our
CoSA-MS models can also attains SOTA performance in multi-stage scenarios.

Methods Sup. Net. VOC COCO

val test val

Supervised Upperbounds.
Deeplab [8] TPAMI’2017 F R101 77.6 79.7 –
WideRes38 [59] PR’2019 F WR38 80.8 82.5 –
ViT-Base [17] ICLR’2021 F ViT-B 80.5 81.0 –
UperNet-Swin [42] ICCV’2021 F SWIN 83.4 83.7 –

Multi-stage Methods.
L2G [26] CVPR’2022 I + S R101 72.1 71.7 44.2
Du et al. [18] CVPR’2022 I + S R101 72.6 73.6 –
CLIP-ES [40] CVPR’2023 I + L R101 73.8 73.9 45.4
ESOL [37] NeurIPS’2022 I R101 69.9 69.3 42.6
BECO [48] CVPR’2023 I R101 72.1 71.8 45.1
Mat-Label [57] ICCV’2023 I R101 73.0 72.7 45.6
CoSA-MS I R101 76.5 75.3[1] 50.9
Xu et al. [63] CVPR’2023 I + L WR38 72.2 72.2 45.9
W-OoD [33] CVPR’2022 I WR38 70.7 70.1 –
MCT [62] CVPR’2022 I WR38 71.9 71.6 42.0
ex-ViT [68] PR’2023 I WR38 71.2 71.1 42.9
ACR-ViT [31] CVPR’2023 I WR38 72.4 72.4 –
MCT+OCR [15] CVPR’2023 I WR38 72.7 72.0 42.0
CoSA-MS I WR38 76.6 74.9[2] 50.1
ReCAM [14] CVPR’2022 I SWIN 70.4 71.7 47.9
LPCAM [13] CVPR’2023 I SWIN 73.1 73.4 48.3
CoSA-MS I SWIN 81.4 78.4[3] 53.7

Single-stage (End-to-end) Methods.
RRM [70] AAAI’2020 I WR38 62.6 62.9 –
AFA [50] CVPR’2022 I MiT-B1 66.0 66.3 38.9
RRM [70]† AAAI’2020 I ViT-B 63.1 62.4 –
ViT-PCM [49] ECCV’2022 I ViT-B 69.3 – 45.0
ToCo [51] CVPR’2023 I ViT-B 71.1 72.2 42.3
SeCo [66] CVPR’2024 I ViT-B 74.0 73.8 46.7
CoSA I ViT-B 76.2 75.1[4] 51.0
CoSA∗ I ViT-B 76.4 75.2[5] 51.1

Table 1: Weakly Supervised Semantic Segmentation Results. Sup.: supervision type.
Net.: segmentation backbone. F : Fully supervised, I: Image-level labels, S: Saliency maps, L:
language models. ∗ represents CRF [8] postprocessing results.

CAM Quality Comparison. Tab. 2 shows CoSA’s CPL results compared with
existing WSSS methods. Our method yields 78.5% and 76.4% mIoU on train
and val. Notably, an ensemble of M′ and M†′ improves performance to 78.9%
and 77.2%, suggesting the activation ofM′ is orthogonal to that ofM†′.
Qualitative Comparison. Fig. 6 presents CAMs and segmentation visualiza-
tions, comparing with recent methods: MCT, BECO, and ToCo. As shown, our
method can generate improved CAMs and produce well-aligned segmentation,
exhibiting superior results in challenging segmentation problems with intra-class

http://host.robots.ox.ac.uk:8080/anonymous/UEMZQP.html
http://host.robots.ox.ac.uk:8080/anonymous/BWWBSW.html
http://host.robots.ox.ac.uk:8080/anonymous/LGFR47.html
http://host.robots.ox.ac.uk:8080/anonymous/GOZOHI.html
http://host.robots.ox.ac.uk:8080/anonymous/4SW3UJ.html
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Image MCT ToCo CoSA BECO ToCo CoSA GT

Fig. 6: Qualitative Comparison. The results are reported on
the val splits of VOC (in R1 - R3 ) and COCO (in R4 - R6 ). The
official codebases and provided weights for MCT [62], BECO [48],
and ToCo [51] are used for this comparison. (best viewed under
zoom; see Supp. for more).

After

CSC

Fig. 7: Effect of CSC.
The class activation for
bird, train, plane, boat
and car are presented from
top to bottom.

variation and occlusions. In addition, CoSA performs well w.r.t. the coexistence
cases (Fig. 6 R1, R2 ), while existing methods struggle. Moreover, CoSA reveals
limitations in the GT segmentation (Fig. 6 R4 ).

4.2 Ablation Studies

CoSA Module Analysis. We begin by employing CAMs directly as the su-
pervision signal for segmentation, akin to [70], albeit without refinement, and
gradually apply CoSA modules to this baseline. As shown in Tab. 3(a), the mIoUs
progressively improve with addition of our components. Further, we examine the
efficacy of each CoSA component. As shown in Tab. 3(b), the elimination of each
component results in deteriorated performance, most notably for CSC.
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Fig. 8: Ablative Study of SA. The per-
formance of SPL (left) and CPL (right) w.r.t.
iterations on VOC val set are shown for
CoSA with or without SA.
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Fig. 9: Ablation Study of RAW. (left)
boxplot of mIoU, perplexity and MAE to
(1,0) for individual CPLs on VOC val. (right)
perplexity reduction over times.

Method ViT-PCM [49] ACR-ViT [31] CLIP-ES [40] SeCo [66] ToCo [51] CoSA CoSA•

train 71.4 70.9 75.0 76.5 73.6 78.5 78.9
val 69.3 – – – 72.3 76.4 77.2

Table 2: Comparisons of CPL. All methods use ViT as the backbone for generating the
CAMs on VOC dataset. • represents the ensemble of M′ and M†′ in CoSA.
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(a)
mIoU (inc.)

Base. GC SA RAW CSC DT VOC COCO

✓ 55.96 37.32
✓ ✓ 63.09 (+7.13) 42.55 (+5.23)
✓ ✓ ✓ 64.41 (+8.45) 43.92 (+6.60)
✓ ✓ ✓ ✓ 68.22 (+12.26) 45.39 (+8.07)
✓ ✓ ✓ ✓ 71.66 (+15.70) 47.10 (+9.78)
✓ ✓ ✓ ✓ ✓ 75.54 (+19.58) 49.67 (+12.35)
✓ ✓ ✓ ✓ ✓ ✓ 76.19 (+20.23) 51.00 (+13.68)

(b)
mIoU (dec.)

CoSA GC SA RAW CSC DT VOC COCO

✓ 76.19 51.00
✓ ✗ 75.54 (-0.65) 49.67 (-1.33)
✓ ✗ 69.89 (-6.30) 45.95 (-5.05)
✓ ✗ 72.45 (-3.74) 47.83 (-3.17)
✓ ✗ 72.10 (-4.09) 49.04 (-1.96)
✓ ✗ 74.12 (-2.07) 49.67 (-1.33)

Table 3: Ablation Study on Contribution of Each Component. (a): gradually add
proposed components to baseline. (b): systematically exclude components from CoSA. GC:
Guided CAMs, SA: Swapping Assignments, RAW: Reliability based Adaptive Weighting,
CSC: Contrastive Separation in CAMs, and DT: Dynamic Threshold. mIoU is reported on
PASCAL VOC12 and COCO val splits.

(a)

Source Detach train val

GT None 83.99 80.16

NO – 72.28 71.38
SPL F 74.19 73.36
SPL Wfc 78.05 76.15
SPL None 78.54 76.37

(b)

Method C-mIoU mIoU

FPR [9] 53.09 53.34
ToCo [51] 63.62 72.33
SeCo [66] 73.18 73.63

w/o CSC 62.61 67.82
w/ CSC 82.34 76.37

(c)
mIoU(%) Speed

Use CRF? ✓ ✗ ✓ ✗

BECO-R101 72.1 70.9(-1.2) 1.95 4.94
COSA-R101 76.5 76.4(-0.1) 2.36 9.60
ToCo-ViT 71.1 69.2(-1.9) 1.82 3.99
COSA-ViT 76.4 76.2(-0.2) 1.83 4.11

Table 4: Ablation Study of GC, CSC and CRF. (a): CPL performance comparison
on VOC. Source: guidance sources. Detach: stop gradient in GC for feature map F or Wfc.
(b): CPL performance comparison. FPR, ToCo and SeCo results are based on their code and
weights. C-mIoU: mIoU for classes with coexistence. (c): CRF Impact. Best speed-accuracy
tradeoff is achieved without using CRF. Inference speeds (FPS) are tested on RTX 3090.

Impact of Guided CAMs. Our model is compared with a baseline [70] that
directly uses CAMs as CPL. As shown in Tab. 4(a), our guided CAMs notably
enhance CPL quality by 6.26% and 4.99% for train and val splits. Further, we
conduct experiments to ascertain the extent to which the two CAM components,
feature F and weights Wfc, exert greater impact on guiding CAMs. As shown,
the deteachment of F results in 74.19% and 73.36%, but Wfc can decrease the
results slightly to 78.05% and 76.37%. This suggests that guiding CAMs pri-
marily optimizes feature maps, verifying our hypothesis of the non-deterministic
feature map contributing to the stochasticity of CAMs in Sec. 3.1.

Impact of Swapping Assignments (SA). Tab. 3(b) suggests that eliminating
SA results in significant mIoU decreases, highlighting the importance of this
training strategy. Further examination of the ON and AN w.r.t. SPL and CPL
indicates that, in later training stages, AN consistently outperforms ON for
both SPL and CPL, as shown in Fig. 8, due to AN performing a form of model
ensembling similar to Polyak-Ruppert averaging [47,52]. We observe a noticeable
disparity of mIoUs between two ONs (solid orange line vs. solid blue line in
Fig. 8), which may be attributed to the superior quality of CPL and SPL from
the AN facilitating a more robust ON for CoSA. The momentum framework,
originally introduced to mitigate noise and fluctuations of the online learning
target [6,22], is used for info exchange across CAMs and segmentation in CoSA.
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Impact of RAW. Tab. 3(b) shows notable mIoU reduction without RAW. We
conduct further studies to investigate its effect on perplexity reduction. The
boxplot in Fig. 9 suggests that RAW leads to higher mIoU but lower perplex-
ity. Fig. 9(right) illustrates a faster decrease in perplexity when RAW is used,
affirming its impact on perplexity reduction.
Impact of CSC. Our CSC is introduced to address the coexistence issues. We
establish C-mIoU to measure the CAM quality for those coexistence-affected
classes. As shown in Tab. 4(b), applying CSC sees a boost in C-mIoU and mIoU,
which surpass the existing methods. Some visual comparisons are given in Fig. 7.
Impact of Dynamic Threshold. We evaluate CoSA using some predetermined
thresholds, comparing them with one employing dynamic threshold on VOC
val split (see Supp. for results). The performance is sensitive to the threshold,
but dynamic thresholding achieves 0.65% increased performance over the best
manual finetuning while saving 80% of hyper-parameter searching time.

4.3 Further Analysis

Training and Inference Efficiency Analysis. Unlike multi-stage approaches,
CoSA can be trained end-to-end efficiently. Compared to BECO [48], our method
is 240% faster in training, uses 50% fewer parameters, and yields a 4.3% higher
mIoU on VOC test. Please refer to Supp. for more discussion. At inference
time, we find that CRF post-processing, which is commonly adopted for refining
masks [15,48] or the CAMs [49,62,70], can greatly slow down the inference speed.
Through our experiments, we show that CoSA does not heavily depend on CRF:
incorporating CRF results in marginal improvement of 0.2%, 0.1%, and 0.1%
for VOC val, VOC test, and COCO val, respectively (Tab. 1). Conversely,
eliminating CRF in CoSA can greatly speed up inference (a noteworthy 307%
and 165% ↑) and achieve better speed-accuracy tradeoff as suggested in Tab. 4(c).

5 Conclusion

This paper presents an end-to-end WSSS method: Co-training with Swapping
Assignments (CoSA), which eliminates the need for CAM refinement and en-
ables concurrent CAM and segmentation optimization. Our empirical study re-
veals the non-deterministic behaviors of CAMs and that proper guidance can
mitigate such stochasticity, leading to substantial quality enhancement. We pro-
pose explicit CAM optimization leveraging segmentation pseudo-labels in our
approach, where a dual-stream model comprising an online network for predict-
ing CAMs and segmentation masks, and an ancillary assignment network provid-
ing swapped assignments (SPL and CPL) for training, is introduced. We further
propose three techniques within this framework: RAW, designed to mitigate
the issue of unreliable pseudo-labels; contrastive separation, aimed at resolving
coexistence problems; and a dynamic threshold search algorithm. Incorporat-
ing these techniques, CoSA outperforms all SOTA methods on both VOC and
COCO WSSS benchmarks while achieving exceptional speed-accuracy trade-off.
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